Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Doyle Britton

Department of Chemistry, University of
Minnesota, Minneapolis, MN 55455-0431, USA

Correspondence e-mail: britton@chem.umn.edu

Key indicators

Single-crystal X-ray study
$T=172 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.041$
$w R$ factor $=0.120$
Data-to-parameter ratio $=13.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

3,5-Difluorobenzonitrile

The title compound, $\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~F}_{2} \mathrm{~N}$, packs with slightly puckered molecular sheets [molecules tilted by $8.1(1)^{\circ}$ with respect to the sheets]. Two of the H atoms in the molecule are in contact with N atoms in adjacent molecules, while the remaining H atom is in contact with two F atoms in adjacent molecules.

Comment

The melting point of 3,5-difluorobenzonitrile, (I), is 357359 K , over 80 K higher than those of benzonitrile (260 K) and pentafluorobenzonitrile (275 K). This suggested that the solid compound might be a good place to look for $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds. The structure of (I) is reported here.

(I)

Fig. 1 shows the atom labeling. The bond lengths and angles are all normal. The ring angles at C 1 and C 3 are larger than 120° and those at C 2 and C 4 smaller, in reasonable agreement with the substituent effects described by Domenicano (1992).

The packing of the molecules is shown in Fig. 2. The molecules lie in a layer parallel to $(10 \overline{2})$ and are tilted by $8.1(1)^{\circ}$ with respect to the layers. The perpendicular distance between molecules in adjacent layers is 3.434 (1) A. Atoms H2 and H4 are in contact with N and F atoms in adjacent molecules. The metric details of these contacts are given in Table 1. In one sense, the arrangement is close to ideal; every H atom inter-

Figure 1
The title molecule, with displacement ellipsoids shown at the 50% probability level.

Received 26 June 2002
Accepted 9 July 2002
Online 19 July 2002

Figure 2
The packing in (I). The view is perpendicular to the molecular plane, 8.1° away from the overall plane, which is parallel to $(10 \overline{2})$. The $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{H} \cdots \mathrm{F}$ contacts are shown as dashed lines. A molecule from the next layer is shown in the lower right hand corner.
acts with either an N or an F atom and every N and F atom interacts with an H atom. However, the $\mathrm{H} \cdots X$ distances are about what would be expected for van der Waals contacts.

Recent reviews (Howard et al., 1996; Dunitz \& Taylor, 1997) have shown that short $\mathrm{H} \cdots \mathrm{F}$ distances are rare, even with good donor groups, such as OH and NH , and are extremely rare when the donor group is CH . On the other hand, Thalladi et al. (1998) have shown in the packing of fluorobenzenes that, even if the $\mathrm{H} \cdots \mathrm{F}$ contact distances are not especially short, the contacts are energetically strong enough to lead to packing patterns that are similar to those in compounds where the CH interacts with O or N atoms in adjacent molecules. The situation in 3,5-difluorobenzene appears to be similar to the results of Thalladi et al. (1998). Although the contact distances are, again, not especially short, they are energetically strong enough to lead to the unexpectedly high melting point.

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~F}_{2} \mathrm{~N}$
$M_{r}=139.10$
Monoclinic, $P 2_{1} / m$
$a=3.730(4) \AA$
$b=7.486(4) \AA$
$c=11.019$ (5) \AA
$\beta=94.34$ (7) ${ }^{\circ}$
$V=306.8(4) \AA^{3}$
$Z=2$
$D_{x}=1.506 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 24 reflections
$\theta=22-27^{\circ}$
$\mu=0.13 \mathrm{~mm}^{-1}$
$T=172$ (2) K
Prism, colorless
$0.50 \times 0.35 \times 0.30 \mathrm{~mm}$
Crystal source: commercial (Aldrich Chemical Co.)

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: none 2908 measured reflections 784 independent reflections 654 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.056$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.120$
$S=1.06$
784 reflections
59 parameters
All H-atom parameters refined
$\theta_{\text {max }}=27.9^{\circ}$
$h=-4 \rightarrow 4$
$k=-9 \rightarrow 9$
$l=-14 \rightarrow 14$
3 standard reflections frequency: 70 min intensity decay: 1%

Table 1
Distances and angles $\left(\AA,^{\circ}\right)$ in the $\mathrm{C}-\mathrm{H} \cdots X-\mathrm{C}$ contacts.

H	X	$\mathrm{C}-\mathrm{H}$	$\mathrm{C}-\mathrm{H} \cdots X$	$\mathrm{H} \cdots X$	$\mathrm{H} \cdots X=\mathrm{C}$	$\mathrm{C} \cdots X$
H2	$\mathrm{N}^{\text {i }}$	0.97	151	2.65	134	$3.523(2)$
H4	F3 $^{\text {ii }}$	0.92	141	2.67	148	$3.431(3)$
H4	F3 $^{\text {iii }}$	0.92	141	2.67	148	$3.431(3)$

Symmetry codes: (i) $2-x, 1-y, 1-z$; (ii) $-x, 1-y,-z$; (iii) $-x,-1 / 2+y,-z$.
Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: TEXSAN (Molecular Structure Corporation, 1985); program(s) used to solve structure: MITHRIL (Gilmore, 1984) and DIRDIF (Beurskens, 1984); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Beurskens, P. T. (1984). DIRDIF. Direct Methods for Difference Structures - an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors. Technical Report 1984/1. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
Domenicano, A. (1992). Accurate Molecular Structures, edited by A. Domenicano and I. Hargittai, pp. 437-468. Oxford University Press.
Dunitz, J. D. \& Taylor, R. (1997). Chem. Eur. J. 3, 89-98.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Howard, J. A. K., Hoy, V. J., O'Hagen, D. \& Smith, G. T. (1996). Tetrahedron, 52, 12613-12622.
Molecular Structure Corporation (1985). TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1 Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Thalladi, V. R., Weiss, H.-C., Bläser, D., Boese, R., Nangia, A. \& Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702-8710.

